EEL 4473/5486

ELECTROMAGNETIC FIELDS AND APPLICATIONS II/
ELECTROMAGNETIC FIELD THEORY I

Spring 2017

Instructor: Dr. Vladimir A. Rakov, EB 553, Tel. 392-4242
E-mail: rakov@ece.ufl.edu
http://plaza.ufl.edu/rakov/

Office Hours: Monday, Wednesday, Friday – 12:50 to 1:40 p.m.
(6th period), 553 EB

Teaching Assistant/Grader: Yanan Zhu, EB 506, Tel. 352-278-8240
E-mail: yananzhu@ufl.edu

Office Hours: Tuesday and Thursday – 12:50 to 1:40 p.m.

3 credits, M, W, F, 5th period (11:45 a.m. – 12:35 p.m.)

Room: 328 BEN

Website:
http://www.rakov.ece.ufl.edu/teaching/4473&5486/4473&5486.html
EEL 4473 ELECTROMAGNETIC FIELDS AND APPLICATIONS II

EEL 5486 ELECTROMAGNETIC FIELD THEORY I

Spring 2017

Introduction 1 lecture

1. Review of Maxwell's equations 3 lectures
 Ch. 9, Sections 4.5, 4.6, 4.8, 7.3-7.6

 - Electromagnetic (EM) field quantities, units, and constants
 - Maxwell's equations for static EM fields
 - Maxwell's equations for dynamic EM fields
 - Time-harmonic Maxwell's equations
2. Electromagnetic wave propagation 5 lectures, test
 Ch. 10
 - Waves in general
 - Lossy dielectrics (general case)
 - Lossless dielectrics
 - Good conductors
 - Reflection of a plane wave

3. Waveguides, Ch. 12, Sections 11.1-11.4 8 lectures, test
 - Transmission lines (TEM waves)
 - Transverse magnetic (TM) waves in rectangular waveguides
 - Transverse electric (TE) waves in rectangular waveguides
 - Wave propagation in the guide
 - Cavity resonators

4. Antennas, Ch. 13 8 lectures, test
 - Hertzian dipole
 - Half-wave dipole and quarter-wave monopole
 - Small loop antenna
- Antenna characteristics (antenna pattern, directive gain, power gain, radiation efficiency)
- Antenna arrays
- Effective area and Friis equation

5. Numerical techniques, Ch. 14
 5 lectures, test

- The finite-difference method
- The moment method
- The finite-element method

6. Electromagnetic coupling
 5 lectures
 Notes provided by instructor

- Lightning electromagnetic fields
- Lightning-induced overvoltages

7. Introduction to electromagnetic compatibility (EMC)
 3 lectures
 Section 13.10

Review
EEL 4473/5486 Spring 2017

<table>
<thead>
<tr>
<th>Course Section</th>
<th>Number of Lectures</th>
<th>Homework Due</th>
<th>Test</th>
<th>Chapter(s) in Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1. Review of Maxwell's equations</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>4.5, 4.6, 4.8, 7.3-7.6, 9</td>
</tr>
<tr>
<td>2. Electromagnetic wave propagation</td>
<td>5</td>
<td>01/27</td>
<td>01/30</td>
<td>10</td>
</tr>
<tr>
<td>3. Waveguides</td>
<td>8</td>
<td>02/17</td>
<td>02/20</td>
<td>11.1-11.4, 12</td>
</tr>
<tr>
<td>4. Antennas</td>
<td>8</td>
<td>03/17</td>
<td>03/20</td>
<td>13</td>
</tr>
<tr>
<td>5. Numerical methods</td>
<td>5</td>
<td>03/31</td>
<td>04/03</td>
<td>14</td>
</tr>
<tr>
<td>6. Electromagnetic coupling</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>Notes provided (items 8 and 9 of the CP)</td>
</tr>
<tr>
<td>7. Introduction to electromagnetic compatibility (EMC)</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>13.10</td>
</tr>
<tr>
<td>Final Exam (27B)</td>
<td>--</td>
<td>--</td>
<td>04/27</td>
<td>9, 10, 12, 13, 14, Course Packet</td>
</tr>
</tbody>
</table>
Each test accounts for **17%** of the overall grade for the course. Final exam is comprehensive and accounts for **32%** of the overall grade. Homework grades do not explicitly enter the overall grade equation,

\[G = 0.17 (T_1 + T_2 + T_3 + T_4) + 0.32F. \]

Bonus System: If your homework grade is **80% or higher**, **AND** if your homework grade is **higher than your corresponding test grade**, then your test grade will be increased by **5%** (not to exceed **100%**). For example, if your homework and corresponding test grades are **90% and 80%**, respectively, your test grade will become **85%**.
≥90% → A; ≥86.67% → A-; ≥83.33% → B+; ≥80% → B;

≥76.67% → B-; ≥73.33% → C+; ≥70% → C; ≥66.67% → C-;

≥63.33% → D+; ≥60% → D; ≥56.67% → D-; <56.67% → E