Figure 3. Channel current as a function of time at different heights above ground as predicted by (a) the TL model, (b) the MTLI model, (c) the MTLE model, (d) the DU model, and (e) the AT model. For the AT model it is assumed that $c_0 = 5.3$ and $R = 0.07$ $\Omega$ m.
"Typical-event" approach involves the use of a typical channel-base current waveform $i(0,t)$ and a typical front propagation speed $V_f$ as inputs to the model, and a comparison of the model-predicted fields with typically observed fields.

"Individual-event" approach. In this approach, $i(0,t)$ and $V_f$, both measured for the same individual event are used to compute fields that are compared to the measured fields for that same event.